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source 
point cloud

target
image

structured geometry interpolation in STRUCTURENET latent space

Fig. 1. StructureNet is a hierarchical graph network that produces a unified latent space to encode structured models with both continuous geometric and
discrete structural variations. In this example, we projected an un-annotated point cloud (left) and un-annotated image (right) into the learned latent space
yielding semantically segmented point clouds structured as a hierarchy of graphs. The shape interpolation in the latent space also produces structured point
clouds (top) including their corresponding graphs (bottom). Edges correspond to specific part relationships that are modeled by our approach. For simplicity,
here we only show the graphs without the hierarchy. Note how the base of the chair morphs via functionally plausible intermediate configurations, or the
chair back transitions from a plain back to a back with arm-rests.

The ability to generate novel, diverse, and realistic 3D shapes along with
associated part semantics and structure is central to many applications re-
quiring high-quality 3D assets or large volumes of realistic training data.
A key challenge towards this goal is how to accommodate diverse shape
variations, including both continuous deformations of parts as well as struc-
tural or discrete alterations which add to, remove from, or modify the shape
constituents and compositional structure. Such object structure can typically
be organized into a hierarchy of constituent object parts and relationships,
represented as a hierarchy of n-ary graphs. We introduce StructureNet, a
hierarchical graph network which (i) can directly encode shapes represented
as such n-ary graphs, (ii) can be robustly trained on large and complex
shape families, and (iii) be used to generate a great diversity of realistic
structured shape geometries. Technically, we accomplish this by drawing
inspiration from recent advances in graph neural networks to propose an
order-invariant encoding of n-ary graphs, considering jointly both part ge-
ometry and inter-part relations during network training. We extensively
evaluate the quality of the learned latent spaces for various shape families
and show significant advantages over baseline and competing methods. The
learned latent spaces enable several structure-aware geometry processing
applications, including shape generation and interpolation, shape editing, or
shape structure discovery directly from un-annotated images, point clouds,
or partial scans.
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1 INTRODUCTION
A long-standing problem in shape analysis and synthesis is how to
build generative models that support the creation of new, diverse,
and realistic shapes. A key challenge is to accommodate diverse
shape variations, including both continuous deformations of parts
as well as structural or discrete alterations which add, remove, or
modify the shape substructures present. We seek a continuous latent
space that can incorporate all this diversity [Hinton 1990] and is
able to encode, for example, chairs with or without armrests, chairs
having four legs or swivel bases, as well as high or low backs, thin or
thick legs, etc. Such a latent space, in turn, enables many non-trivial
applications including generating shapes with both novel structure
and geometry, discovering object structures from raw unannotated
point clouds or images by ‘projecting’ them to the learned latent
space, manipulating shapes in a structure-aware fashion, etc.
One path to this goal is to represent shapes as structured ob-

jects [Mitra et al. 2014] comprising of a collection of parts that are
organized according to part-level connectivity and inter-part re-
lationships. Further, these parts can naturally be organized into
hierarchies [Wang et al. 2011a] encoded as n-ary trees, with objects
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Fig. 2. N-ary part hierarchies. Shape parts can naturally be organized
into n-ary hierarchies. Here we show the part hierarchies of two shapes as
defined by PartNet [Mo et al. 2019]. The top row shows oriented bounding
boxes of leaf parts and the hierarchy is illustrated below. Hierarchy nodes
have the same color as the corresponding part. Note how geometrically
dissimilar shapes may have consistent hierarchies. Our shape representation
captures this consistency.

coming from the same shape family sharing similar hierarchies (see
Figure 2). It is important to note, however, that many semantically
significant relationships in the geometry of 3D shapes, such as sym-
metries, can connect distant nodes in the hierarchy, which may
be spatially separated. These ‘horizontal’ relations pose additional
constraints on shape encoders. In this paper, we refer to such hi-
erarchical n-ary trees with horizontal connections as hierarchy of
n-ary graphs, or simply hierarchy of graphs. Access to large volumes
of 3D data (e.g., Turbosquid, ShapeNet, etc.) has now opened the
possibility of learning class-specific latent spaces directly from data,
aided by significant part annotation efforts within these databases.
In the case of ShapeNet [Chang et al. 2015], both coarse-grained
and fine-grained part annotations are available [Mo et al. 2019; Yi
et al. 2016].

A notable work that creates such generative models is the GRASS
framework [Li et al. 2017]. Inspired by recursive neural networks
introduced in the context of natural language processing for encod-
ing binary trees, GRASS further refines part-level object hierarchies
into binary trees, and then recursively utilizes an encoder-decoder
network [Socher et al. 2011] to build a latent space from which
both a hierarchical structure and geometry at the leaves can be
decoded. However, because of the binary constraint, GRASS has to
additionally search over possible binarizations of the n-ary hierar-
chies found in objects, so that the binarized versions are consistent
across objects in the same shape family. While this works nicely on
small- to medium-sized datasets, the setup is difficult to train on
large to very large shape families (e.g., PartNet [Mo et al. 2019]), as
the task of finding a canonical binary tree representation becomes
increasingly challenging (see Section 6).

We introduce StructureNet, a hierarchical graph network that
directly encodes more general graphs with parents having a variable
number of children and horizontal relationships between siblings.
StructureNet relies on three main innovations: Firstly, by directly
working with n-ary graphs for object structures, we have funda-
mentally avoided unnecessary data variation that is introduced
with binarization, thus can significantly simplify the learning task.
Secondly, we achieve invariance with respect to part-level sibling
ordering at both encoding and decoding time, by using symmet-
ric functions (e.g., max-pooling) during encoding, and solving for

a linear assignment problem to establish correspondences during
decoding. Finally, we make use of horizontal inter-part relation-
ship edges following a novel graph-based message passing protocol.
These features enable us to robustly train StructureNet on large to
very large shape families so as to effectively capture both structural
and geometric variations.
Building such a latent space for structured shapes has several

advantages that can be exploited by various applications. First, the
structure (i.e., part hierarchy and inter-part relationship) itself is
useful for down-stream applications. Editors, for example, can edit,
swap, or model parts individually, and make use of structural con-
straints such as symmetries. Second, structure is often more con-
sistent inside a shape category than geometry. Chairs, for example,
usually have a seat, a backrest and a base at a coarse hierarchy level,
even if there is large variability in the geometry of these parts (see
Figure 2). Finally, the ability to project raw unstructured shapes
(e.g., images, point clouds, partial scans) onto such a latent space
automatically induces structures on the raw input (i.e., provides a
hierarchical part segmentation, capturing part-level contacts and/or
symmetry relationships) and subsequently enables a diverse set of
structure-aware manipulations.
A broad range of applications is enabled by our hierarchical

graph networks, which can be grouped as follows: (i) abstracting
raw inputs including point clouds, images, partial scans to obtain
their structure; (ii) creating novel shapes in parameterized form
or point cloud form based on a set of training shapes; (iii) allow-
ing structure-aware interpolation between source and target shapes
while displaying both topological and geometric variations; and
finally, (iv) structure-aware object manipulation to smartly modify
a part or replace a part. For example, in Figure 1, the input source
point clouds and target image are first independently abstracted,
and then directly interpolated in a latent space that was learned by
StructureNet1 on 5K chairs from the PartNet dataset.

In summary, our contributions include:
• introducing an encoding for shape hierarchies of n-ary part
graphs that is general enough to allow for a consistent hier-
archical representations of shapes within a category;

• learning to encode and decode rich geometric relationships
(e.g., adjacency, symmetry) between sibling parts, represented
as edges in the hierarchical graphs, with graph neural net-
works to constrain realistic shape generation;

• developing a generative model StructureNet that allows
shape synthesis for both box-structures and point clouds with
diverse and valid geometrical and structural variations; and

• illustrating the use of StructureNet in both analysis and
synthesis tasks, including shape reconstruction, novel shape
generation, structure-aware shape interpolation, abstraction
of un-annotated point clouds or images, and various shape
editing applications.

2 RELATED WORK
Our work is primarily related to structure-aware shape represen-
tations (see [Mitra et al. 2014]) that go beyond local geometry and
depict shapes through the arrangement and relations between shape

1Code and data will be released on acceptance.
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parts, as well as to 3D shape generative models that aim to model the
variations of 3D shapes and to synthesize novel 3D shapes. Finally,
our work is inspired by recent developments in neural networks for
graph structured data.

Structure-Aware Shape Representations. Understanding high-level
shape structure such as parts and their relations is a central research
topic in shape analysis. Most existing approaches focus on iden-
tifying shape parts [Golovinskiy and Funkhouser 2009; Hu et al.
2012; Huang et al. 2011; Kalogerakis et al. 2017, 2010; Makadia and
Yumer 2014; Sidi et al. 2011; Xie et al. 2014; Yi et al. 2016], or part
parameters and relations [Chaudhuri et al. 2011; Fish et al. 2014,
2016; Ganapathi-Subramanian et al. 2018; Kalogerakis et al. 2012;
Kim et al. 2013; Müller et al. 2006; Sung et al. 2017; Yumer et al.
2015]. These approaches are usually restricted in the complexity
and variety of part layout they can handle. To be able to process
complex structures frequently appearing in the real world, several
methods parse object parts in hierarchies [Mo et al. 2019; Van Kaick
et al. 2013; Wang et al. 2011a; Yi et al. 2017a; Yu et al. 2019]. We also
adapt a hierarchical structure representation for 3D shapes. How-
ever, we additionally augment the part hierarchy with ‘horizontal’
relations so as to encode shape structure into a more general n-ary
graph. Our goal is to model and capture the distribution of such
graphs in a shape collection. Structured 3D representations are also
widely adopted for scene synthesis applications [Li et al. 2019; Liu
et al. 2014; Zhao et al. 2016]. These approaches usually target gen-
erating a scene hierarchy and rely on object retrieval to complete
the scene, while we focus on object-level structure synthesis with
corresponding part-level geometric details.

3D Deep Generative Models. Recently, deep neural networks have
been successfully leveraged to create generative models for 3D
shapes. Wu et al. [2016] learn to generate 3D shapes in a volumetric
representation through a deep belief network. [Goodfellow et al.
2014] also use volumetric representations for 3D shapes but capture
the distribution of objects through a generative adversarial network
(GAN). To improve the generation quality, researchers have not only
explored novel architecture designs for volumetric representations
[Choy et al. 2016; Gwak et al. 2017; Yan et al. 2016], but also studied
various 3D representations, such as point clouds [Achlioptas et al.
2017; Fan et al. 2017; Li et al. 2018b], multi-view depth maps [Ar-
salan Soltani et al. 2017], oct-tree representations [Tatarchenko et al.
2017; Wang et al. 2018b], surface meshes [Groueix et al. 2018; Sinha
et al. 2017], string-based shape synthesis [Kalojanov et al. 2019], etc.
These approaches, however, focus on low-level geometry without
considering the overall object structure in the generation process.

An alternate approach is to model structure along with geometry,
which not only factorizes the complex distribution of 3D objects to
facilitate learning but also makes the generation results more useful
for downstream applications. Nash and Williams [2017] developed
a variational auto-encoder (VAE) [Kingma and Welling 2013] to
learn a latent representations for 3D objects, where they could
synthesize new shapes in a part-by-part manner. However, they
represent shapes as ordered vectors and require one-to-one dense
correspondences among training shapes, which is not easy to obtain
for shapes with large topological differences. Wang et al. [2018a]
first learn to synthesize voxel-based shape structures with parts and

labels using a GAN on a set of segmented shapes, and then refine
the geometry of each part through an auto-encoder. Wu et al. [2018]
jointly learn and embed the geometry of parts and the pairwise
relationship among parts using a VAE, where the geometry and
structure features are intertwined in the encoder while disentangled
in the decoder, to make the generation process structure-aware.
The above approaches do not consider the hierarchical nature of
object structures and simply focus on a flat arrangement of parts,
making them less applicable to complex structures as defined by Mo
et al. [2019]. Tian et al. [2019] generate structured 3D object through
executing a series of 3D shape programs, but do not provide a way
to sample and generate such shape programs freely.
Most relevant to ours is GRASS [Li et al. 2017], which learns

a distribution of binary symmetry hierarchies of shapes. Novel
shape structure can be sampled and generated from the distribution.
However, the required binary symmetry hierarchy can introduce
arbitrary ordering in nodes and make the hierarchy inconsistent
across shapes. Instead, StructureNet allows direct handling of
n-ary graphs and further explicitly models relationship between
parts in the graph. Hence it can be robustly trained on much larger
datasets (see Figure 3 for a comparison).
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Fig. 3. Interpolation compared to GRASS. We compare interpolations
between several pairs of chairs using StructureNet (colored boxes), and
using GRASS (blue boxes). We interpolate between shapes from our test set
shown on the left-most and right-most sides, after being reconstructed by
both methods (marked as ‘source’ and ‘target’). Our interpolations use a
larger number of smaller structural changes to reach the target shape.
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Neural Networks for Graph Structured Data. The shape structure
we aim to generate, which is essentially the layout of parts and
the relationship among them, can be represented as a hierarchy
of n-ary graphs. A wide variety of works have explored how to
design deep neural networks that can analyze graph structured
data. To encode a tree structure, [Li et al. 2017; Socher et al. 2012,
2011] use recursive neural network (RvNN) to sequentially collapse
edges of the graph. In graph convolutional networks [Bruna et al.
2013; Defferrard et al. 2016; Duvenaud et al. 2015; Hamilton et al.
2017; Kipf and Welling 2017; Veličković et al. 2017; Xu et al. 2019a],
concepts frommature image CNNs are transferred to generic graphs.
This approach has been widely applied in various shape processing
methods where shapes are treated as mesh graphs [Boscaini et al.
2015; Masci et al. 2015; Wang et al. 2019; Yi et al. 2017b]. With a
similar motivation, we design a novel graph encoding framework
that combines RvNNs with graph convolutions to process a shape
represented as a hierarchy of graphs.

Our framework is also related to various graph neural networks
for synthesis purposes. There is a significant amount of work from
the natural language processing and program synthesis commu-
nities on tree-like graph generation [Dyer et al. 2016; Maddison
and Tarlow 2014; Socher et al. 2011; Vinyals et al. 2015], but most
of these works are restricted to trees and not capable of handling
more generic graphs. On the other hand, recent works like [Li et al.
2018a; You et al. 2018] aim at general graph generation and do not
specialize their method to any domain. In comparison, our graph
generation network is not restricted to trees, but is specialized to
our shape representation that encodes both shape geometry and
structure, and can thus fully leverage domain-specific knowledge.

3 OVERVIEW
We represent the hierarchy of shape parts as an n-ary tree, where
each node is a part or part assembly. Geometric relationships of parts,
such as symmetries and adjacencies, are captured by additional
edges between siblings of the tree, forming a graph among siblings.
See Figure 4 for an example. Each node contains information about
the geometry of the part, capturing in total the geometry of the
shape. In a given category, such as chairs, shapes tend to have
consistent part hierarchies, as shown in the PartNet dataset [Mo
et al. 2019]. Most chairs, for example, naturally decompose into
backrest, seat, and base at the top hierarchy level. The n-ary tree
in our shape representation can directly capture this hierarchy,
giving us a shape representation with a high degree of consistency
between shapes of a given category. Section 4 describes our shape
representation in detail.
This shape representation, including structure and geometry, is

mapped into a latent space with a Variational Autoencoder. We
introduce hierarchical graph networks for the encoder and decoder,
which are recursive networks [Socher et al. 2011] that perform
graph convolutions [Kipf and Welling 2017; Xu et al. 2019a] at each
recursion level. They are described in Section 5.
This gives us a rich latent representation of both the structure

and the geometry of shapes in a category, that can be used in several
applications. In Section 6 and the Supplementary, we demonstrate
shape generation, interpolation, retrieval, editing, as well as the

discovery of structure from unannotated images, point clouds, or
raw scans.

4 A HIERARCHY OF GRAPHS FOR SHAPE STRUCTURE
We introduce a shape representation that captures both the geome-
try and structure of a shape, and is suitable for processing by our
hierarchical graph network. We assume that the shapes we work
with can be decomposed into a meaningful set of parts. A shape
S = (P,H,R) is then represented by a set of parts P = {P1, . . . , PN },
describing the geometry of the shape, and a structure (H,R) that
describes how these parts are organized and related to each other.
The structure consists of two superimposed graphs: a hierarchi-
cal decomposition H of the shape into parts, and a set of geometric
relationships R among the parts. Figure 4 illustrates an example.

base backseat

surfaceregular

leg leg runner …

frame

bar barτrτₒτt τₐ

τₐ

τrτₒτt

τₐ τₐ

Fig. 4. Shape Representation. Shapes are represented by their hierarchi-
cal decomposition into parts (black edges), with geometric relationships
between siblings (orange arrows): adjacency (τa), translational symmetry
(τt), reflective symmetry (τr), and rotational symmetry (τo). A pair of parts
may have multiple relationships of different types. The part geometry can be
represented as point clouds or oriented bounding boxes. Here we show the
latter, colored by semantic (see Supplementary for a full list of semantics).

Part representation. In our experiments, we support the use of two
alternative representations for the geometry of a part Pi . Either, we
represent a part’s geometry with its minimum oriented bounding
box Bi = (ci ,qi , ri ), where c ∈ R3 are the world coordinates of
the box center, q ∈ H is the orientation of the box encoded as
quaternion, and r ∈ R3 is the size of the box; or, we represent a part
by a corresponding point cloud Ai = {x1, . . . ,xk }, where x ∈ R3

are the world coordinates of a point. In addition to geometry, each
part also has a semantic label li , such as back, seat, or base, that is
consistent across shapes of the same category. We refer readers to
the supplementary material for the details of the consistent semantic
hierarchies we use.

Hierarchical decomposition. The hierarchical decomposition starts
with the entire shape as root, which is split into a set of constituent
parts, such as seat, back, and base for chairs. These parts are then
recursively decomposed into their constituent parts, until reaching
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the most fine-grained parts at the leafs. We represent this decompo-
sition with a tree (P,H), where P are the shape parts and H ⊂ P2 are
directed edges from a parent part to all the children it is composed
of. Note that a node may have any number of children, and the tree
need not be balanced, that is, paths to leaves from a node can differ
significantly in length.

Geometric relationships. In addition to vertical composition in the
hierarchy, parts may also be related ‘horizontally’ by relationships
such as adjacency and/or symmetry. These relationships can be
crucial characteristics of shapes. Chairs, for example, often exhibit
a reflective symmetry, as well as adjacency between several parts,
and failing to take these relationships into account often results
in the generation of unrealistic chairs. On the other hand, taking
into account potential relationships between all pairs of parts in the
hierarchy would require a number of relationships in the order of
Θ(N 2), whereN is the total number of parts, and auto-encoding such
a large set of relationships accurately poses significant difficulties. In
our experiments, we found, however, that encoding all relationships
is not necessary, as the most important relationships occur between
siblings of the hierarchy (e.g., legs of a chair, drawers in a cabinet,
armrests of a couch) and relationships between other parts of the
hierarchy are usually less significant or indirectly implied via a chain
of relations following the hierarchy tree. Thus, we choose to only
capture geometric relationships between siblings in the hierarchy,
significantly sparsifying the relationship graph.

We represent these relationships with additional undirected edges
Ri between siblings {Pj , Pk } among the children Ci of a parent part
Pi . We denote these edges as ({Pj , Pk },τ ). Each edge has an asso-
ciated relationship type τ from a list of possible relationship types
T. In our experiments, we use four relationship types: adjacency,
reflective symmetry, rotational symmetry, and translational sym-
metry. These edges form a graph (Ci,Ri) among siblings, and our
hierarchy effectively becomes a hierarchy of graphs, where each
shape part is expanded into a graph at the next lower level. We call
each of these graphs an n-ary graph, to emphasize the n-ary nature
of the hierarchy over these graphs.

5 HIERARCHICAL GRAPH NETWORKS
We propose a novel Variational Autoencoder (VAE) [Kingma and
Welling 2013] for our shape representation that can be used for
generation, interpolation, and several other applications we will
demonstrate in Section 6. Our VAE consists of an encoder e , that
maps a shape S to a latent feature vector z = e(S), and a decoder d ,
that maps the feature vector back to a shape, so that approximately
d(e(S)) ≈ S . As described later, we measure the quality of this
approximation based on both geometric and structural similarity.
We introduce StructureNet or hierarchical graph networks as a
new network architecture for the encoder and decoder that can
efficiently encode and decode both the geometry and the structure of
our shape representation. Figure 5 shows the network architecture.

5.1 Encoder
The encodermaps a shape represented as a hierarchy of n-ary graphs
to a latent feature vector z. We set the dimensionality of the feature
space to 256, i.e. z ∈ R256. Each (leaf or intermediate) node i in the

tree (P,H) is also mapped to a feature vector fi ∈ R256. The code z
for a complete shape is simply the feature vector describing the root
node z = f1. The encoder works recursively in a bottom-up manner
using two types of encoders (See Fig. 5). First, we compute feature
vectors for the leaf nodes using a geometry encoder. Then, we encode
intermediate nodes using a graph encoder. The recursive nature of
this approach is similar to previous work on structure encoding [Li
et al. 2017, 2019], which in turn was inspired by natural language
processing [Socher et al. 2011]. However, since we need to encode
n-ary graphs, that may additionally have a variable number of parts,
the architecture of both our encoder and especially our decoder are
significantly different.

Geometry encoder. The geometry encoder fi = egeo(Pi ) encodes
the geometric representation of a leaf node Pi into a feature vector fi .
The geometric representation of a part can either be the bounding
box Bi of the part or its point cloud Ai . We employ specialized
geometry encoders for each of these representations. The bounding
box encoder consists of a single layer perceptron (SLP). Since the
part encoder is always followed by one or more applications of the
graph encoder, a single layer is sufficient. Point clouds Ai are first
centered at their mean and uniformly scaled to have a unit bounding
sphere. The center and scale are then encoded using another SLP,
while the normalized point cloud is encoded with a PointNet [Qi
et al. 2017a]. Both of these outputs are merged and encoded by
another SLP into the feature vector fi .

Graph encoder. The child graph of a part Pi is given by (Ci,Ri),
where Ci are the child parts and Ri their relationship edges. Each
part Pj ∈ Ci in the child graph is represented by the concatenation
of its feature vector and label f̂j = (fj , lj ), while relationship edges
in Ri have as feature only their type τ . Both the part label and edge
type are encoded as one-hot vectors. Note that we do not store the
relationship parameters, such as the axis of a rotational symmetry.
The graph encoder fi = egraph({ f̂j | Pj ∈ Ci},Ri) encodes this child
graph into a fixed-length feature vector fi .
The architecture of the graph encoder is inspired by the recent

Graph Isomorphism Networks (GIN) [Xu et al. 2019b] and Dynamic
Graph CNNs [Wang et al. 2019]. To encode the child graph, we
perform several iterations of message passing along the edges of the
graph. In each iteration, a node aggregates features of its neighbors
to compute an updated feature vector. Since we also have features
for edges, we include them in each message that is passed over an
edge. In each iteration t , a part’s feature vector is updated with,

f
(t )
j =

1
M

∑
({Pj ,Pk },τ )∈Ri

h(t )
(
f
(t−1)
j , f

(t−1)
k ,τ

)
, (1)

whereM is the number of neighbors for Pj and h(t ) are SLPs, one
for each iteration; h(t ) encodes the message that is passed over an
edge, consisting of the source part’s feature vector f (t−1)

k , the target

part’s feature vector f (t−1)
j and the edge type τ . The messages from

all neighboring parts are averaged to get the updated feature f
(t )
j .

Iterations start with f
(0)
j = f̂j and we perform two iterations of

message passing for each graph in our experiments. After message
passing, the feature vector for the entire graph is computed by
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Fig. 5. Hierarchical Graph Networks.Our variational autoencoder consists of two encoders and two decoders that both operate on our shape representation.
The geometry encoder egeo encodes the geometry of a part into a fixed-length feature vector f , illustrated with a gray circle. The graph encoder egraph encodes
the feature vectors of each part in a graph, and the relationships among parts, into a feature vector of the same size using graph convolutions. The graph
encoder is applied recursively to obtain a feature vector z that encodes the entire shape. The reverse process is performed by the graph and geometry decoders
dgraph and dgeo to reconstruct the shape. The decoder also recovers the geometry of non-leaf nodes.

max-pooling over all child parts Pj ∈ Ci:

f
(t )
i = max{ f (t )j }. (2)

Finally, we concatenate the graph feature vectors computed after
each iteration, and pass them through another SLP д:

fi = дskip
(
f
(0)
i , f

(1)
i , f

(2)
i

)
. (3)

Note that this acts like skip connections for the iterations and allows
the network to make use of features from all iterations.

5.2 Decoder
The decoder transforms the root feature vector z back into a shape
represented as a hierarchy of graphs. It expands nodes in a top-
down fashion. In each step, it first performs the reverse operation
of the graph encoder, using the graph decoder dgraph to transform
a latent code fi into its child graph. The decoder then transforms
the resulting feature vector of each child back into the geometry
representation of the child with the geometry decoder dgeo. Unlike in
the encoder, we decode the geometry of each part in the hierarchy,
not only the leaf parts. This gives additional opportunity for super-
vision during training in the form of a reconstruction loss on the
decoded intermediate geometry, as we will describe in Section 5.3.

Geometry decoder. Wehave two alternative decoders for the bound-
ing box representation Bi = dgeo(fi ) and the point cloud represen-
tation Ai = dgeo(fi ) of a part. Both transform the feature vector
of a part back to the part’s geometry representation. The bound-
ing box decoder is implemented as a multi-layer perceptron (MLP)
with two layers, that transforms a feature vector fi to a bounding
box Bi = (ci ,qi , ri ). The point cloud decoder obtains a normalized
point cloud from the feature vector with a three-layer MLP, and the
center and scale of the point cloud using an SLP. We pre-train the
geometry encoder and decoder for point clouds, as a separate au-
toencoder for the point cloud geometry of shape parts. This gives us

greatly increased training stability at the cost of a slightly decreased
reconstruction accuracy.

Graph decoder. The graph decoder transforms a parent feature
vector fi back into the child graph ({ f̂j | Pj ∈ Ci},Ri) = dgraph(fi ),
where each child part Pj ∈ Ci is represented by a feature vector and
its label f̂j = (fj , lj ). Since child graphs have a variable number of
parts and edges, we always decode a fixed maximum number np of
child parts and all n2

p edges between them, together with a binary
probability that a predicted part or edge exists in the child graph.
Note that parts and their relations are simultaneously decoded. In
our experiments, we use a maximum of 10 parts. Parts and edges
that are predicted not to exist in the graph are discarded.
We start by decoding initial feature vectors from the parent fea-

ture vector using an SLP дparts:

( f̃1, . . . f̃np ) = дparts(fi ) (4)

for the maximum number of child parts np . To predict the existence
of parts, we compute

pj = σ (дxp( f̃j )), (5)

where pj is the predicted probability that the child part j exists, σ is
a sigmoid, and дxp is a single linear layer. Parts with pj < 0.5 are
discarded.

To predict the existence of edges, we can proceed similarly. Recall
that the graph encoder accumulates information about the graph
neighborhood in the feature of each part. Thus, we can recover the
edges between a pair of parts based on their pair of feature vectors:

(p(j1, j2,τ1), . . . ,p(j1, j2,τ |T |)) = σ (дxe( f̃j1 , f̃j2 )), (6)

where p(j1, j2,τ ) is the predicted probability that an edge between
child parts Pj1 and Pj2 of type τ exists, and |T | is the number of
edge types. As дxe, we use a two-layer MLP. Edges are discarded if
any of the adjacent parts do not exist, or if p(j1, j2,τ ) < 0.5.

We perform two iterations of message passing along the predicted
edges, analogous to the message passing described in Section 5.1,
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starting with the initial feature vectors f̃j and resulting in the final
child feature vectors fj . Experimentally, we found the message
passing to enable the parts to refine and coordinate their geometry
based on the relationships described by the edges, like symmetry
or adjacency. As a final step, we decode two additional values from
the feature vectors fj : the semantic labels lj and a probability pleafj
that Pj is a leaf part. If a part is predicted to be a leaf part, we do not
attempt to predict the existence of children for the node, making
it easier for the network to stop the recursion. We found that this
helps convergence especially in the early stages of training.

5.3 Training and Losses
We train our VAE on a dataset S of shapes from a given category.
We assume models in the dataset not to have parts with more than
np = 10 children. Each shape is represented as a hierarchy of graphs
with known structure.

Our goal is to train the encoder and decoder of our VAE to perform
a reversible mapping of each shape S to a feature vector z in a latent
space where manipulations of the shape such as generation and
interpolation are easier. To learn this mapping, we use a loss that is
composed of three parts:

Ltotal = ES∼S [Lr (S) + Lsc (S) + βLv (S)], (7)

where S is the distribution of shapes in a category and E denotes
the expected value. The reconstruction loss Lr encourages reversibil-
ity of the mapping, the structure consistency loss Lsc encourages
consistency between the reconstructed parts and reconstructed re-
lationship edges, and the traditional variational regularization Lv
of VAEs with regularization weight β that encourages the manifold
of shapes in latent space to be smooth and simple, see [Kingma and
Welling 2013] for a description. We empirically set β = 0.05 for
our experiments. We now define the reconstruction loss and the
consistency loss.

Reconstruction loss. The VAE is encouraged to learn a reversible
mapping by training it with a reconstruction loss:

Lr (S) = q
(
S, d(e(S))

)
, (8)

where q is a distance metric between reconstructed shapes and
ground truth shapes. The distance needs to be designed to provide
good gradients to the encoder and decoder.
To compare two shapes S and S ′ = d(e(S)), we first need to es-

tablish a correspondence between parts in the two shapes. Here we
need to choose between two strategies: we could either encode and
reconstruct the order of parts in S , or use an order-invariant en-
coder and establish a correspondence by matching the structure and
geometry of the reconstructed shape to the input shape. We choose
the second option, as we empirically found the order-invariant
network produces superior performance (similar conclusion was
reached for point cloud encoding [Qi et al. 2017a]). We compute
a linear assignment of the parts in the two shapes separately for
each child graph. Starting at the root, the assignment of parent
parts determines which child graphs are matched at the next lower
level. This gives an assignmentM ⊂ P × P′ over all parts in the two
shapes, where P′ are the reconstructed parts. To train part and edge
existence predictions, we include the reconstructed parts that are

predicted not to exist in this assignment. Parts are matched based on
their geometry representations. We define the geometry difference
between parts with point cloud geometry as a squared version of
the chamfer distance [Barrow et al. 1977] between the point clouds:

qgeo(Pi , Pj ) = qchs(Ai , Aj ), (9)

with the squared version of the chamfer distance [Fan et al. 2017]
defined as:

qchs(Ai ,Aj ) =
1

|Ai |
∑

xi ∈Ai
min
x j ∈Aj

∥xi − x j ∥2
2 +

1
|Aj |

∑
x j ∈Aj

min
xi ∈Ai

∥x j − xi ∥2
2 .

(10)

For the bounding box representation, we cannot directly take the
difference of the box parameters, since the orientation and scale of
the box representation is ambiguous (e.g., a bounding box can ro-
tated by multiples of 90 degrees about any local axis and re-scaled to
give the same bounding box). Instead, we take the chamfer distance
between point samples on the boundaries of the two boxes:

qgeo(Pi , Pj ) = qchs(T (Bi )U, T (Bj )U), (11)

where U is a pre-computed set of samples on the unit cube, and
T (Bi ) is a 4D transformation matrix that transforms the unit cube
to the part’s bounding box Bi . Since non-uniformly scaling the unit
cube with T (Bi ) results in a non-uniform point density, qchamfer
weighs the transformed point samples with the area of the face they
were sampled from [Tulsiani et al. 2017]. Based on the assignment
M, the distance q between two shapes is composed of five loss terms,
as described next.

(i) Geometry loss. The geometry loss measures the distance be-
tween the geometry of two parts:

Lgeo(S, S ′) =
∑

(Pi ,P ′
j )∈M

qgeo(Pi , P ′j ). (12)

Additionally, the geometry of unmatched parts is trained to be all
zeros to make the linear assignment more robust.

(ii) Normal loss. The geometry loss works well in general, but it is
less sensitive to the orientation of small bounding boxes, especially
if they have the same size along some of their dimensions, such
as a rotation of thin rods about their longest axis. To make the
reconstruction of part geometry represented as bounding boxes
more sensitive to the orientation of the boxes, we add the normal
loss that approximates the distance of the reconstructed box normals
to the input box normals:

Lnormal(S, S ′) =
∑

(Pi ,P ′
j )∈M

qchs(T (qi )N, T (qj )N), (13)

where N are the six unique normals of the unit cube. The trans-
formation T (qi ) rotates these normals to the orientation qi of part
Pi . As in Eq. 11, we use the squared chamfer distance between the
predicted and ground truth normals.
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(iii) Part existence loss. The part existence loss measures how ac-
curately the existence of parts is reconstructed:

Lxp(S, S ′) =
∑
Pj ∈P′

H (pj , 1P′M (Pj )), (14)

where pj is the predicted part existence probability defined in Eq. 5,
1 is the indicator function, P′ are all parts in S ′, and P′M is the subset
that has a match in S . The cross entropy H encourages existence for
parts that have a match, and non-existence for all other parts.

(iv) Edge existence loss. The edge existence loss measures how
accurately the existence of edges is reconstructed:

Lxe(S, S ′) =
∑

({P ′
j1,P

′
j2 },τ )∈R′

H (p(j1, j2,τ ), 1R′
M
({P ′j1, P

′
j2},τ )), (15)

where p(j1, j2,τ ) is the predicted edge existence probability defined
in Eq. 6, R′ are all edges in S ′, and R′

M the subset that has a match
of the same type τ in S . This loss encourages existence for edges
that have a match, and non-existence otherwise.

(v) Semantic loss. The semantic loss is the cross entropy between
the reconstructed label probabilities and the input labels, given as
one-hot vectors:

Lsem(S, S ′) =
∑

(Pi ,P ′
j )∈M

H (li , lj ), (16)

where li and lj are the input and reconstructed labels of the matched
parts.

(v) Leaf loss. Finally, the leaf loss measures the accuracy of the
leaf prediction pleafi :

Lleaf(S, S ′) =
∑

(Pi ,P ′
j )∈M

H (pleafj , 1Pleaf (Pi )), (17)

where Pleaf is the subset of parts in S that are leafs.
Finally, the distance q between two shapes is the sum of these

five losses:

q(S, S ′) = αLgeo + γLnormal + Lxp + Lxe + λLsem + Lleaf. (18)

Empirically, we set (α ,γ , λ) = (20, 10, 0.1) in all our experiments.

Structure consistency loss. Some types of errors in the reconstruc-
tion of parts are more severe than others. If a part is not in a geo-
metric relationship with other parts, small reconstruction errors in
the position, orientation or scale of the part are often less noticeable.
However, if these errors break existing relationships, such as symme-
try or adjacency relationships, even small errors can be much more
apparent. Hence, we add a loss that encourages the reconstructed
parts to be structurally consistent with the reconstructed geometric
relationships of a shape – a self-consistency constraint between the
part relations and the part geometries which is an important aspect
of our loss design. This can be understood as a constraint violation
loss, where the relationships act as constraints.
Given a relationship edge (P ′i , P

′
j ,τ ) of the reconstructed shape,

we quantify how much the geometry of the parts P ′i and P
′
j violates

the relationship described by the edge. Additionally, a relationship
between two parts should also hold for their subtrees. For example,
a mirror symmetry between two parents should also constrain their

τr τr

τr

Fig. 6. Relationships between subtrees. A relationship between two non-
leaf parts also holds for their subtrees. The reflective symmetry τr of the
parent parts on the left also holds for their children on the right.

two subtrees to be mirrored in the same way, see Figure 6 for an
illustration. Hence, we also encourage the entire subtrees Di and
Dj of P ′i and P

′
j to follow the same relationship. We first define the

point cloud representation of a subtree, including the root, as:

Di =
⋃

Pk ∈Di∪{Pi }
T (Bk )U. (19)

As in Eq. 11,U is a pre-computed set of samples on the unit cube, and
T (Bk ) is a 4D transformation matrix that transforms the unit cube
to a part’s bounding box Bk . When representing part geometries
with point clouds, we directly use the union of the point clouds.

Next, we introduce a loss for symmetries, and a loss for adjacencies.
For symmetries R′

sym, we first compute the closest configuration
of P ′j relative to P ′i that would not violate the relationship, and
vice-versa for P ′i relative to P

′
j . We use the distance from that con-

figuration as loss:

Lsym(S ′) =
∑

({P ′
i ,P

′
j },τ )∈R′

sym

qchs
(
D j , ρτ (Bi ,Bj )Di

)
, (20)

where Bi and Bj are the bounding boxes of the two parts and ρτ is
a function that computes an affine transformation from Bi to the
closest configuration of Bj that does not violate the relationship
type τ . When representing part geometries with point clouds, we
first compute the oriented bounding box of the corresponding point
clouds to obtain Bi and Bj , respectively.
For adjacency realtions, R′

adj, our loss is the minimum distance
qmin between the geometry representations of the leaf parts only:

Ladj(S ′) =
∑

({P ′
i ,P

′
j },τ )∈R′

adj

qmin(Li , Lj ), (21)

where Li and Lj are subsets of Di and D j , representing only the leaf
parts of the subtrees.
Finally, the structure consistency loss is the sum of symmetry

and adjacency losses:

Lsc (S) = Lsym(S ′) + Ladj(S ′), (22)

where S ′ = d(e(S)) is the reconstructed shape.
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6 EXPERIMENTS
Accurately capturing structure in a smooth latent space gives us a
simple and effective approach to many shape understanding and
synthesis problems. In this section, we present quantitative and
qualitative evaluations to demonstrate the effectiveness of our hier-
archical graph networks on 6 tasks: shape reconstruction, genera-
tion, interpolation, abstraction, and editing. Additional results are
available in the Supplementary.

Data Preparation. We use PartNet [Mo et al. 2019] as the main
dataset for all the experiments in the paper. PartNet provides fine-
grained and hierarchical part annotations with consistent semantic
labels for 26,671 3D objects from 24 object categories. We use the
three largest categories for our experiments: cabinets, chairs, and
tables. In the Supplementary, we show results for three additional
categories: vases, trashcans can and beds. Also in the Supplementary
is a description of the semantic hierarchy in these categories. Since
we have a maximum number of child parts per parent part np = 10,
we remove shapes that have more than 10 children in any of their
parts. Note that this maximum could also be increased if needed,
slightly increasing memory consumption2. Additionally, we remove
shapes that have unlabeled parts. The remaining 4871 chairs, 5099
tables, and 862 cabinets are divided into training, validation and test
sets using the data splits published in the PartNet dataset, which
have a ratio of 7 : 1 : 2.

In PartNet, shapes are represented as meshes that are divided into
individual parts. Each shape in the dataset is scaled to be contained
in the unit sphere. To obtain bounding boxes Bi for each part, we
fit an oriented minimum-volume bounding box to the mesh of each
part. Point clouds Ai are obtained by uniformly sampling the part’s
surface with 1000 points. The part hierarchy H is given explicitly in
the dataset. To define geometric relationships R between parts, we
find symmetries using the method described by Wang et al. [Wang
et al. 2011b], and define two parts as adjacent if their smallest dis-
tance is below 0.05∗r̄ , where r̄ is the average bounding sphere radius
of the two parts. On average, our shapes have 16.94 parts, arranged
in a hierarchy of average depth 3.59, with an average number of
29.93 relationship edges. Each part has a semantic label chosen from
a list of labels specific to each category. The number of different
labels ranges from 36 for cabinets to 82 for tables.

6.1 Shape Reconstruction
As a first experiment, we measure the reconstruction performance
of our hierarchical graph networks to find out how accurately our
latent space can represent the shapes in the test set. To get an
accurate reconstruction performance, just for the experiments in
this section, we train an non-variational autoencoder version of our
network. We use two groups of errors to measure reconstruction
performance. Three reconstruction errors for the geometry, the
hierarchy, and the relationship edges, and two structure consistency
errors that measure the consistency of the reconstructed geometry
with both the reconstructed and the input relationship edges.

The geometry reconstruction error EP is defined analogously to the
geometry loss Lgeo, except that we use the non-squared chamfer

2with our current settings, the memory consumption is ∼ 1GB for a batch size of 32.

Table 1. Reconstruction performance on each shape category. We
compare the reconstruction performance of StructureNet on six shape cat-
egories. See the supplementary for a qualitative evaluation of the categories
bed, trashcan, and vase. The first three columns show the box geometry, hi-
erarchy, and edge reconstruction errors, respectively. The consistency of the
reconstructed shapes with the reconstructed relationship edges (recon) and
the ground truth relationship edges (gt) is shown in the last two columns.
Bed comes in last due to severe undersampling of the shape category, with
only 54 training shapes. Our performance is best for chairs, which have a
more balanced variety of training shapes than the other categories.

reconstruction error consistency error

EP EH ER Erc Egc

Bed 0.069 0.609 0.518 0.019 0.032
Cabinet 0.066 0.461 0.386 0.021 0.027
Chair 0.062 0.200 0.246 0.018 0.023
Table 0.073 0.309 0.357 0.021 0.026
Trashcan 0.083 0.073 0.110 0.014 0.015
Vase 0.147 0.214 0.391 0.014 0.060

distance. Since our shapes are contained in the unit sphere, this
gives us more easily interpretable distance values in [0, 2].

The hierarchy reconstruction error EH counts how many missing
or unmatched parts are in the reconstructed hierarchy, using the
assignmentM between the input and reconstructed shapes described
in Section 5.3:

EH =
1
|P|

(
|P \ PM | + |P′ \ P′M |

)
, (23)

where P and P′ are the sets of parts in the input and reconstructed
shapes, respectively. PM and P′M denote the corresponding subsets
of matched parts.
The edge reconstruction error ER uses the assignmentM to mea-

sure the precision and recall of the reconstructed edges, which we
summarize in an error metric defined as one minus the F1 score:

ER = 1 −
(
2
ep ∗ er
ep + er

)
, (24)

where the precision and recall are defined as ep = |R′
M |/|R′ | and

er = |R′
M |/|R|, respectively.

The reconstructed consistency error Erc measures the consistency
of the reconstructed geometry with the reconstructed relationship
edges. It is defined equivalent to Lsc, except that we use the non-
squared chamfer distance.

Similarly, the ground truth consistency error Egc measures the con-
sistency of the reconstructed geometry with the input relationship
edges.

The reconstruction performance of StructureNet on the three
shape categories chair, table and cabinet is given in Table 1. In
this experiment, we represent part geometry as oriented bounding
boxes. The largest cause of reconstruction error we encountered
when training our network is the unbalanced variety of shapes in
each category. The datasets typically contain some sub-types of a
category, such as square tables, more often than other sub-types,
such as triangular tables. As a consequence, the network may have
too few examples to learn a good representation of the more exotic
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geometry reconstruction error EP
GRASS Orig. 0.103
GRASS PartNet 0.082
StructureNet (no edges) 0.065
StructureNet 0.061

Fig. 7. Reconstruction compared to GRASS. In the top three rows, we
show reconstructions of the left-most shape using the two variants of GRASS
described in Section 6.1, and then reconstructions using a version of Struc-
tureNet that does not use edges, and finally using our full method. Due
to our more consistent shape representation, our method scales better to
datasets with the size of PartNet. Using edges additionally improves part
relationships such as the symmetries between the armrests, as seen in the
third row. This is confirmed by the reconstruction error over the whole
dataset, shown in the table below.

shape varieties. The chair dataset is the most balanced among the
categories, giving us lower reconstruction errors than for the other
categories. Additionally, the cabinet and bed datasets contain shapes
with more complex structure on average, giving us higher hierarchy
and edge reconstruction errors.
We compare our reconstruction performance to two baselines:

GRASS [Li et al. 2017] as a state-of-the-art structure-aware shape
generation method, and an autoencoder based on PointNet++ [Qi
et al. 2017b], as a state-of-the-art point cloud autoencoder that
holistically encodes the point cloud of a shape without using any
explicit structure.

Comparison to GRASS. The comparison to GRASS is shown in Fig-
ure 7. A qualitative comparison is shown in the top three rows, and a
quantitative comparison on the chair dataset in the table below. The
oriented bounding box of each leaf part is illustrated as transparent
box, colored according to its semantic (see the Supplementary for
the full semantic tree of each category). GRASS results are colored
uniformly, since semantics are not available. We measure only the
geometry reconstruction error, since the structure of GRASS is not
directly comparable to our shape representation. GRASS requires a
binarization of shape hierarchies that are naturally n-ary. A binariza-
tion that is consistent between all shapes in a category is difficult
to find, and this difficulty grows with the number and variety of
shapes in a category. On our dataset, which has ∼10 times the size of
the dataset originally used in GRASS, this task becomes too difficult.

in
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ET

Fig. 8. Reconstruction compared to a holistic approach. We recon-
struct the point cloud representation of the shapes in the top row with
a holistic approach (orange) that does not use structure, and compare to
StructureNet. The holistic approach suffers from noise that results in a
loss of detail, whereas reconstruction errors in our approach take the form
of slightly modified chair structures, such as the hole added to the backrest
in the third column. However, the functional realism of the shape is usually
preserved and the explicit structure allows us to preserve significantly more
detail.

For this reason, the authors provided us with two modified version
of their method, that each sacrifice some generality for a reduced
number of possible binarizations. The first version, which we call
GRASS Orginal, reduces generality and possible binarizations by
a small amount, resulting in a method very similar to the original
GRASS. Results for this method are shown in the second column of
Figure 7 and the first row of the table. Due to the large number of
possible binarizations, the performance is low. The second version,
which we call GRASS PartNet uses the semantic hierarchy of PartNet
to significantly reduce the number of possible binarizations. This
increases the performance of GRASS, as shown in the third column
of the figure and the second row of the table. Our approach, on the
other hand, can encode and decode n-ary hierarchies directly, lead-
ing to a more consistent representation of the structure that gives us
a significant improvement in reconstruction performance, as shown
in column four and row 3 of the table. Relationship edges provide
and additional boost to the reconstruction performance, by ensuring
that symmetries that are present in the input are maintained in the
reconstruction. Note that we evaluate this comparison on a reduced
subset of 4031 chairs, since the GRASS authors reported that their
pipeline failed to produce results for the remaining 840 chairs in
our dataset.

Comparison to a holistic autoencoder. We train an autoencoder
based on PointNet++ [Qi et al. 2017b] and PointSetGen [Fan et al.
2017] to compare the effects of encoding geometry only to our
structure-aware latent space. PointNet++ is used as encoder, fol-
lowed by a point cloud decoder network proposed in PointSetGen.
We train both this autoencoder and StructureNet on the chair
dataset, with part geometry represented as point clouds. For the
PointNet++ autoencoder, we merge the geometry of the leaf parts
into a single point cloud for the shape. Results are shown in Figure 8
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Table 2. Shape generation compared to GRASS.We compare the shape
distribution learned by the two version of GRASS described in Section 6.1 to
our method without edges and to our full method, using two metrics that
measure how close the shapes are to the data distribution (quality) and how
much of the data distribution is covered by the generated shapes (coverage).
We report the scores relative to our method, higher numbers indicate better
performance. Results show that our latent distribution better captures the
data distribution.

rel. quality rel. coverage

GRASS Orig. 0.714 0.818
GRASS Partnet 0.788 0.818
StructureNet (no edges) 0.984 0.989
StructureNet 1.0000 1.0000

where points are visualized as small spheres, colored by their se-
mantic in the same way as the bounding boxes in Figure 7. Note that
the holistic results have significantly more noise, making it harder
to recover details. Since we encode structure, errors in our approach
instead take the form of slight modifications to the structure and
layout of parts, such as added hole in the backrest of the chair in
the third column, or the slightly modified arrangement of bars in
the backrest of the chair in the last column. The structure, however,
tends to remain realistic and since we represent the point cloud
of each part separately, individual parts are sharper an details are
better preserved.

6.2 Shape Generation
A straight-forward application of our hierarchical graph network
is shape generation. In the remainder of Section 6, we use a VAE
with the variational regularization weight β = 0.05. This gives us a
dense and smooth distribution of shapes in latent space that we can
draw from to generate new samples of shapes, including geometry
and structure. We show both qualitative results and a quantitative
comparison to GRASS for this application.

Qualitative evaluation. Several examples of generated shapes are
presented in Figure 10, using both the bounding box representation
and the point cloud representation for part geometry. Our results
show a large variety in structure and part geometry, with a layout
of individual parts that is functionally plausible. For each shape,
we generate our full shape representation, including the geometry
of individual parts, the hierarchical decomposition of these parts,
symmetry and adjacency relationship edges between siblings, and
part semantics. This rich high-level representation of the shapes is
useful for several applications, some of which we will present in the
following sections.

Shape novelty and overfitting. To evaluate the novelty of our gen-
erated shapes, we show the top-five closest training samples to
several generated chairs in Figure 9, using the chamfer distance as
metric. We can see that the generated shapes are quite different in
both geometry and structure from the closest matches, suggesting
little overfitting to the training set.

Quantitative evaluation. Quantitatively, the goal of this applica-
tion is to cover as much of the data distribution as possible, while

Fig. 9. Novelty of generated shapes. In the first column we show three
generated shapes, and on the right the five closest matches in the training
set, measured with the chamfer distance. Our generated structure and
geometry is different from the shapes in the training set.

at the same time, avoiding unrealistic chairs that are distant from
the main mass of the data distribution. We quantify this goal with
two metrics. The quality, of a generated shape set is measured by
the average closest distance to any data sample, while the coverage
is measured as the average closest distance from each data sample
to a generated sample.

quality B
∑

S ′∈SG
min
S ∈S

dS (S ′, S) and

coverage B
∑
S ∈S

min
S ′∈SG

dS (S ′, S),
(25)

where S is the training set, SG is a set of generated shapes, and dS
is the chamfer distance between the point representations of two
shapes. To compare with GRASS using these metrics, we compute
a set of 1000 shapes using both StructureNet and GRASS, and
compute their quality and coverage. We show results relative to
the performance of StructureNet in Table 2 (i.e. StructureNet
scores divided by the method scores). We see an improvement over
GRASS in both quality and coverage of the generated shapes.

6.3 Shape Interpolation
We further examine the quality of our learned latent space with
interpolations between shapes, visualizing samples along line seg-
ments in the space. We show several examples of interpolations in
Figure 13. The left half of the figure shows interpolations between
shapes with bounding box geometry, the right half between shapes
with point cloud geometry. Note how the structure changes in small
intuitive steps between the source and target of an interpolation.
For example, in row 6 on the left side, the backrest of the chair is
simplified part by part, while on the base, bars between the legs
are added in multiple steps, and armrests are simplified to have
fewer parts before disappearing. At the same time, each of the steps
represents a valid and functional chair. We find it interesting to see
in which way the network learned to arrange shape configurations
in latent space, especially since these arrangements often seem to
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Fig. 10. Generated shapes.We show shapes in all categories decoded from random latent vectors, including shapes with bounding box geometry, and shapes
with point cloud geometry. Parts are colored according to semantics, see the Supplementary for the full semantic hierarchy for each category. Since we
explicitly encode shape structure in our latent representation, the generated shapes have a large variety of different structures.
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Fig. 11. Interpolation compared to a holistic approach. We compare
our interpolation (colored) to a holistic approach (orange) that encodes
shapes as point clouds without any structure. Explicitly encoding structure
gives us a sequence of small structural changes in the intermediate steps,
whereas the holistic approach produces no significant structural changes.
Additionally, our per-part geometry is cleaner than the per-part geometry
in the holistic approach, where it is hard to identify detailed parts.

correspond to our own intuition. For example, the pedestal base of
the chair on the top right is first made smaller, before completely
disappearing, and reappearing again as 4 separate legs that increase
in size. Similarly, the transition from shelves with few boards to
shelves with many boards near the bottom right of the figure, tran-
sitions by increasing or decreasing the number of boards step by
step.

Comparison to GRASS. We provide a qualitative comparison of
these interpolations to GRASS PartNet in Figure 3. First, we see
issues with the reconstruction accuracy of grass, but looking at the
interpolations only, we see that some interpolation of the structure,
such as the reduction of the number of legs of the chairs happens
much less gradual than in our interpolations, with fewer, larger
steps.

Comparison to holistic interpolation. Figure 11 compares Struc-
tureNet for point cloud geometry to interpolating without struc-
ture using the same holistic point cloud network described in Sec-
tion 6.1, but using a VAE instead of an autoencoder. The VAE is
necessary to obtain a smooth latent space suitable for interpola-
tion, but makes the shapes much noisier than for the autoencoder,
whereas our point clouds do not suffer as much from this switch
to a VAE. Interpolations are smooth for the holistic VAE, but lack
interesting transitions between structural details. Parts such as the
armrests in the second row gradually disappear, whereas our arm-
rests get replaced by simpler, but still functionally valid variants
before being removed.

Partial interpolation. Since shape structures in a category are con-
sistent, we can do interpolations between corresponding parts of a

ba
ck
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ba
ck

re
st

ba
se

Fig. 12. Part Interpolation.We interpolate either only the backrest (first
row) or only the base (second row) between the chairs on the left and right
side. Intermediate shapes preserve structural plausibility of the interpolated
result mainly through geometric differences to the target part, but faithfully
interpolate the structure. We observe that these interpolations are not
necessarily symmetric: the base interpolations follow different paths to be
compatible with the different back styles.

shape. We perform the partial interpolation by taking the encoded
part latent vector fi of a shape, interpolating it with the correspond-
ing part latent vector of another shape, and then re-encoding the
shape with the interpolated part latent vector. This ensures plausibil-
ity of the resulting shape by effectively projecting the shape to the
learned manifold of shapes. In Figure 12, we interpolate either only
the backrest or only the base for each of two chairs. The structure of
the interpolated part changes to resemble the target part, while the
other parts of the shape remain largely unchanged. We can also see
that the final step of the interpolation does not fully reach the target
part, because the network ensures the plausibility of the resulting
chair. For example, in the second interpolation, the short legs of
the sofa would result in an implausible shape when attached to the
chair. Thus, the interpolation depends on the context of the part.
Even though the geometry is not the same, the structure of the chair
bases is interpolated correctly and resembles the target structure at
the final interpolation step.

6.4 Shape Abstraction
Discovering higher-level structure in un-annotated point clouds and
images are long-standing vision and graphics problems. Our rich
latent representation provides us with an approach to tackle these
problems. We can encode images, point clouds, and shapes into a
common latent space, using separately trained encoders for images
and un-annotated point clouds. Given a trained StructureNet
autoencoder d(e(S)) for the box representation of our shapes, we
train additional encoders to take images I and un-annotated point
clouds O to the same latent space. From the latent space, we can
use our pre-trained decoder d to recover a shape S ′ that is similar
to the shape represented with the input image or point cloud, but
has all the information of our shape representation.
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Fig. 13. Interpolation of shapes. We show interpolations between a source shape and a target shape from all categories. Interpolations are symmetric, so
source and target are interchangeable. Interpolations between shapes with box geometry is shown on the left side, and point cloud geometry on the right side.
Note how each interpolation is a smooth transition between two different structures that preserves functional plausibility in each step. In the interpolations
between shelves with different numbers of boards, for example (bottom right), the number of boards is gradually increased/decreased in each step, and each
step is a functional shelf.

Image abstraction. The image encoder eI is a ResNet18 [He et al.
2016] that was pre-trained on ImageNet [Deng et al. 2009]. In-
spired by the joint embedding approach of [Li et al. 2015], we re-
fine this encoder on a dataset of images rendered from the shapes
in our training set. We render the shapes with textures obtained
from ShapeNet [Chang et al. 2015], from 24 random angles around
the their up vector, from a random elevation between 25 and 30
degrees, and a random distance between 1.2 and 2.0 times the

bounding sphere radius. For each image, we additionally have the
corresponding latent vector in the latent space of the trained au-
toencoder d(e(S)). We train the image encoder to map each im-
age to the latent representation of the shape it was rendered from
LI = e(S)−eI (render(S,θ )), where θ are the random camera param-
eters. We test on images generated from shapes in our validation
and test sets, examples are shown in Figure 14, top. While the pro-
portions of objects are not completely accurate, the overall shape,
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Fig. 14. Image and point cloud abstraction. Images, synthetic point
clouds, and real-world scans from ScanNet [Dai et al. 2017] are embed-
ded into our learned latent space, allowing us to effectively recover a full
shape description that matches the raw input.

and even many of the details are represented accurately in the re-
covered shape, suggesting that the joint embedding successfully
aligns structurally similar images and shapes in the latent space.

Point cloud abstraction. The point cloud encoder eO is imple-
mented as PointNet++ [Qi et al. 2017b] and similar to the image
encoder, we train the network to encode 10k points obtained from
each shape in our training set into the latent representation of the
corresponding shape with LO = e(S) − eO (sample(S)). Examples of
abstractions computed for point clouds in our test set are shown in
Figure 14, rows 3 and 4. We also tested our approach on real-world
scans obtained from ScanNet [Dai et al. 2017]. Even though the
statistics of the point distribution on real-world scans is likely to be
different from our synthetic point sets, and the scans are missing
large regions, our shape abstraction can recover good matches for
each of the point clouds (see Figure 14, last two rows).

6.5 Shape Editing
Edits performed on a shape in a traditional 3D editor do not take into
account the plausibility of the resulting shape. Our learned latent
space gives us a definition of shape plausibility. Edits of a shape that
preserve plausibility can thus be performed by finding the shape in
our latent space that best satisfies the given edit. Below we present
two simple shape editing applications based on this approach.

bo
xe

s
po

in
t c

lo
ud

s

(a) (b) (c) (d) (e)

Fig. 15. Structure-aware part editing. We show editing results on two
shapes with box geometry (first four rows) and two shapes with point cloud
geometry (two bottom rows). For the two shapes with box geometry, we
perform five different edits each, one edit per column. The edited box is
highlighted in yellow, and the result is shown below. We see that the other
boxes in the shape are adjusted to maintain shape plausibility. For the two
shapes with point cloud geometry, we show intermediate results for one
edit each. From left to right, these are (a) the original point cloud; (b) the
predicted box abstraction; (c) the induced segmentation; (d) edited boxes;
and (e) the induced edit of the point-cloud.

Structure-preserving part edits. In our latent space, shapes with
similar structure are located close to each other. We can preserve
the structure of a shape during editing by working with shapes
that are close to the original shape in latent space. Starting from
a shape with bounding box geometry, we edit one of its boxes, by
translating, non-uniformly scaling, or rotating it. We then optimize
for a shape in our latent space that is as close as possible to the
original shape, while also satisfying the box edit:

arg min
z

(

z − z∗


2

2 + qchs(T (Be (z))U, T (Bte )U) + Lsc (d(z))
)
.

(26)
The first term is the squared distance between the latent vector of
the edited shape z and the latent vector of the original shape z∗. The
second term is minimized by shapes that satisfy the edit, using the
squared chamfer distance between the configuration of the edited
box Be in z and its target configuration Bte . Since the box edit is
likely to break existing symmetries, we also specifically optimize
for a shape S = d(z) that is consistent with its relationships using
the loss Lsc , as defined in Eq. 22.
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Figure 15 shows 5 edits on each of the two shapes shown on
the top left-hand side. Edited boxes are marked in yellow in the
top row of each shape, and the result of the edit is shown in the
bottom row. Since results only use shapes that can be found in
our latent space, the results maintain plausibility of the shapes,
adjusting the other parts in the shape as needed. Since we optimize
for proximity to the original shape in latent space, the resulting
shapes have similar structure, with a few minor exceptions, such as
the added bars between the chair legs in the fourth column. This
experiment suggests that structural differences are more distant in
the latent space than geometric differences. This can also be verified
by examining the visualization of the latent space provided in the
Supplementary.

Point Cloud Editing. We can extend this editing approach to unan-
notated point clouds using the abstraction approach described in
Section 6.4. The abstraction of the point cloud induces an instance
segmentation, where each point is assigned to the closest bounding
box. After editing the boxes with the method described above, we
can update the subset of points corresponding to each box with the
same transformation applied to the box, giving us an edited point
cloud. The bottom two rows of Figure 15 show these steps in two
examples edits. The edited point clouds show some artifacts due to
the hard boundaries between different segments, but closely resem-
ble the edited boxes. In the future, we could augment this method
with either soft assignments of points to boxes (where boxes act
similar to bones in character animation), or a segment refinement
step, where the segment boundaries are optimized to coincide with
surface discontinuities of the shape.

6.6 Limitations and Failure Cases
We discuss several limitations and failure cases: (i) StructureNet,
being a data-driven method, naturally inherits any data sampling
biases in the datasets (e.g., shape families with very few examples
such as pingpong tables). (ii) Even though our empirical experiments
demonstrate good performance on adjacency recovery and sym-
metry enforcement, the inferred latent space may contain models
with detached parts or asymmetric parts, especially for datasets that
contain exotic, poorly represented shape variants. (iii) We restrict
the maximum sibling count to np = 10, and hence cannot encode
shapes with more than 10 childs in any given part (the full shape can
have a much larger number of parts). The memory cost is quadratic
in np , although, at our current setting, this is still far from being the
most memory-consuming component (our current consumption is
approx. 1 − 2 GB). (iv) Noise that would make a point cloud more
blurry in holistic generation methods instead affects the structure
in our method. Strong noise may result in missing parts, duplicate
parts, detached parts, etc., although the structure, being discrete, is
quite robust to this type of noise. See the bed category in the Sup-
plementary for an example of structural noise. (v) Structure-aware
point cloud generation is still a new topic requiring further research.
In our experiments, to stabilize network training, we pretrain and
freeze the part point cloud networks, which increases training ro-
bustness at the cost of failing to recover fine-grained geometry
details (e.g., details on chair legs and chair backs). Figure 16 shows
different failure cases of StructureNet.

Fig. 16. Failure cases analysis. We present several failure cases we ob-
served for box-shape and point cloud generation. We see discrete errors
such as missing parts (e.g. first row, first column), duplicate parts (e.g. second
row, second column), detached parts (e.g. first row, third column), asymmet-
ric parts (e.g. second row, first column) and fuzzy point cloud generation
(e.g. second row, fifth column).

7 CONCLUSION
We have presented StructureNet as a VAE that directly encodes
shape structure and geometry represented as a hierarchy of n-ary
graphs. We have achieved this by proposing a recursive/hierarchical
encoder-decoder architecture that simultaneously considers both
geometry of parts, either as oriented bounding boxes or point clouds,
and inter-part structures capturing adjacency and symmetry rela-
tions. Our key technical novelty is the handling of n-ary graphs by (i)
explicitly predicting the presence or absence of parts or relationship
edges, (ii) designing the encoder and the decoder to be invariant
of the ordering of siblings across instances of the n-ary graphs,
and (iii) introducing novel losses that enforce consistency between
geometry and structure at all levels of the hierarchy. The learned
n-ary structural graph latent space, by jointly capturing geometric
and structure, greatly simplifies several applications. For example,
we can ‘enter’ the latent space by projecting un-annotated data (e.g.,
partial scans, point clouds, or images) onto the latent space; perform
structure-aware edits on individual shapes; do hierarchy-preserving
interpolation between multiple shapes, or generate novel and di-
verse variations by directly sampling the encoded latent shape.

In future work we plan to (a) obtain user feedback to improve
the estimated structure of un-annotated data and use this feedback
to improve the latent embedding; (b) look at more nuanced repre-
sentations of fine-grained part geometry and its correlations with
structural motifs; (c) estimate point-level correspondences between
raw shape data from images or point clouds and the learned mod-
els so as to transfer textures and other appearance information to
the model and more generally study style-content factorizations;
and (d) extend these ideas from individual objects to entire scenes,
where the objects now become the parts and we now focus on object
relationships in scenes.
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